

DPP-1 (Capacitor)

Video Solution on Website :-

Video Solution on YouTube:-

https://youtu.be/uPzt1E0GvLY

https://physicsaholics.com/home/courseDetails/103

Written Solution on Website:- https://physicsaholics.com/note/notesDetalis/63

Q 1. Capacitance of following combination of spheres are C₁, C₂ & C₃

- Q 2. Capacity of a spherical capacitor is C_1 when inner sphere is charged and outer sphere is earthed and C_2 when inner sphere is earthed and outer sphere is charged. Then $\frac{C_1}{C_2}$ is : (a = radius of inner sphere, b = radius of outer sphere) (a) 1 (b) $\frac{a}{b}$ (c) $\frac{b}{a}$ (d) $\frac{a+b}{a-b}$
- Q 3. Three conducting spheres A, B and C are as shown in figure. The radii of the spheres are a, b and c respectively. A and B are connected by a conducting wire. The capacity of the system is between A and C is:

Q 4. An air capacitor consists of two parallel plates A and B as shown in the figure. Plate A is given a charge Q and plate B is given a charge 3Q. P is the median plane of the capacitor. If C_0 is the capacitance of the capacitor, then:

(a)
$$V_P - V_A = \frac{Q}{4C_0}$$

(b) $V_P - V_A = \frac{Q}{2C_0}$
(c) $V_P - V_A = \frac{Q}{C_0}$
(d) $V_P - V_A = -\frac{Q}{4C_0}$

Q 5. A capacitor of capacitance C is charged to a potential difference V from a cell and then disconnected from it. A charge +Q is now given to its positive plate. The potential difference across the capacitor is now

(a) V
(b)
$$V + \frac{Q}{c}$$

(c) $V + \frac{Q}{2c}$
(d) $V - \frac{Q}{c}$, if $V < CV$

Q 6. A, B and C are three large, parallel conducting plates, placed horizontally. A and C are rigidly fixed and earthed. B is given some charge. Under electrostatic and gravitational forces, B may be

(a) in equilibrium midway between A and C(b) in equilibrium if it is closer to A than to C(c) in equilibrium if it is closer to C than to A(d) B can never be in stable equilibrium

Q 7. In an isolated parallel-plate capacitor of capacitance C, the four surfaces have charges Q_1 , Q_2 , Q_3 and Q_4 , as shown. The potential difference between the plates is

Q 8. Two metallic spheres of radii a and b are separated by a distance d as shown in figure. the capacity of the system is (assuming d is very large in comparison to a and b) –

(a) $4\pi\epsilon 0/(1/a + 1/b - 2/d)$ (b) $2\pi\epsilon 0/(1/a - 1/b + 1/d)$ (c) $4\pi\epsilon 0/(1/a + 1/b - 1/d)$ (d) $4\pi\epsilon 0(a + b)$

Q 9. Two thin long parallel conductor cylindrical wires of radius a have distance b between their axes. Their capacitance per unit length is

(b) $\frac{1}{ln\left(\frac{b}{a}\right)}$ (d) $\frac{ab\pi\epsilon_0}{b-a}$

(a)	$\pi\epsilon_0$
(a)	$ln(\frac{b}{a})$
	(n(a)
(c)	$4\pi\epsilon_0$
(U)	$ln(\frac{b}{2})$
	(a)

- Q 10. If charge on positive plate of parallel plate capacitor is Q and electric field between plates is E, electrostatic force on positive plate will be
 - (a) QE
 - (b) QE/2
 - (c) QE/4 (d) QE/8
 - (a) QE/8
- Q 11. Keeping potential difference between plates constant if we increase distance between parallel plate capacitor to two times electrostatic force between plates will become (a)2 times of initial value

(b) 4 times of initial value

- (c) 1/4 times of initial value
- (d) $\frac{1}{2}$ times of initial value

Q.1 a, d	Q.2 b	Q.3 b	Q.4 b	Q.5 c
Q.6 b, d	Q.7 b, c	Q.8 a	Q.9 a	Q.10 b
Q.11 c				

PRATIES ALANA PHYSICS ALA