DPP-1 (Capacitor)

Video Solution on Website :-
 https://physicsaholics.com/home/courseDetails/103

Video Solution on YouTube:-
 https://youtu.be/uPzt1E0GvLY

Written Solution on Website:-

Q 1. Capacitance of following combination of spheres are $\mathrm{C}_{1}, \mathrm{C}_{2} \& \mathrm{C}_{3}$

(a) $\mathrm{C}_{2}>\mathrm{C}_{1}$
(b) $\mathrm{C}_{1}>\mathrm{C}_{3}$
(c) $\mathrm{C}_{1}>\mathrm{C}_{2}$
(d) $C_{3}>C_{2}$

Q 2. Capacity of a spherical capacitor is C_{1} when inner sphere is charged and outer sphere is earthed and C_{2} when inner sphere is earthed and outer sphere is charged. Then $\frac{C_{1}}{C_{2}}$ is $:(\mathrm{a}=$ radius of inner sphere, $b=$ radius of outer sphere)
(a) 1
(b) $\frac{a}{b}$
(c) $\frac{b}{a}$
(d) $\frac{a+b}{a-b}$

Q 3. Three conducting spheres A, B and C are as shown in figure. The radii of the spheres $a r e a, b$ and c respectively. A and B are connected by a conducting wire. The capacity of the system is between A and C is:

(a) $4 \pi \varepsilon_{0}(a+b+c)$
(b) $4 \pi \varepsilon_{0}\left(\frac{b c}{c-b}\right)$
(c) $4 \pi \varepsilon_{0}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)$
(d) $4 \pi \varepsilon_{0}\left(\frac{a b c}{a b+b c+c a}\right)$

Q 4. An air capacitor consists of two parallel plates A and B as shown in the figure. Plate A is given a charge Q and plate B is given a charge $3 Q$. P is the median plane of the capacitor. If C_{0} is the capacitance of the capacitor, then:

(a) $V_{P}-V_{A}=\frac{Q}{4 C_{0}}$
(b) $V_{P}-V_{A}=\frac{Q}{2 C_{0}}$
(c) $V_{P}-V_{A}=\frac{Q}{C_{0}}$
(d) $V_{P}-V_{A}=-\frac{Q}{4 C_{0}}$

Q 5. A capacitor of capacitance C is charged to a potential difference V from a cell and then disconnected from it. A charge $+Q$ is now given to its positive plate. The potential difference across the capacitor is now
(a) V
(b) $\mathrm{V}+\frac{Q}{C}$
(c) $V+\frac{Q}{2 C}$
(d) $\vee-\frac{Q}{C}$, if $\vee<C V$

Q 6. A, B and C are three large, parallel conducting plates, placed horizontally. A and C are rigidly fixed and earthed. B is given some charge. Under electrostatic and gravitational forces, B may be

(a) in equilibrium midway between A and C
(b) in equilibrium if it is closer to A than to C
(c) in equilibrium if it is closer to C than to A
(d) B cannever be in stable equilibrium

Q 7. In an isolated parallel-plate capacitor of capacitance C, the four surfaces have charges Q_{1}, Q_{2}, Q_{3} and Q_{4}, as shown. The potential difference between the plates is

(a) $\frac{Q_{1}+Q_{2}}{C}$
(b) $\left|\frac{Q_{2}}{C}\right|$
(c) $\left|\frac{Q_{3}}{C}\right|$
(d) $\frac{1}{C}\left[\left(\mathrm{Q}_{1}+\mathrm{Q}_{2}\right)-\left(\mathrm{Q}_{3}-\mathrm{Q}_{4}\right)\right]$

Q 8. Two metallic spheres of radii a and b are separated by a distance d as shown in figure. the capacity of the system is (assuming d is very large in comparison to a and b) -

(a) $4 \pi \epsilon 0 /(1 / a+1 / b-2 / d)$
(b) $2 \pi \in 0 /(1 / a-1 / b+1 / d)$
(c) $4 \pi \epsilon 0 /(1 / a+1 / b-1 / d)$
(d) $4 \pi \in 0(a+b)$

Q 9. Two thin long parallel conductor cylindrical wires of radius a have distance b between their axes. Their capacitance per unit length is
(a) $\frac{\pi \epsilon_{0}}{\ln \left(\frac{b}{a}\right)}$
(b) $\frac{2 \pi \epsilon_{0}}{\ln \left(\frac{b}{a}\right)}$
(c) $\frac{4 \pi \epsilon_{0}}{\ln \left(\frac{b}{a}\right)}$
(d) $\frac{a b \pi \epsilon_{0}}{b-a}$

Q 10. If charge on positive plate of parallel plate capacitoris Q and electric field between plates is E, electrostatic force on positive plate will be
(a) QE
(b) QE/2
(c) $\mathrm{QE} / 4$
(d) QE/8

Q 11. Keeping potential difference between plates constant ifwe increase distance between parallel plate capacitor to two times, electrostatic force between plates will become
(a) 2 times of initial value
(b) 4 times of initial value
(c) $1 / 4$ times of initial value
(d) $1 / 2$ times of initial value

Answer Key

Q. 1 a, d	Q. 2 b	Q. 3 b	Q. 4 b	Q. 5 c
Q. 6 b, d	Q. 7 b, c	Q. 8 a	Q. 9 a	Q. 10 b
Q. 11 c				

